1,881 research outputs found

    Dynamic trade-offs in water use between irrigation and reservoir aquaculture in Vietnam

    Get PDF
    Conflicts of interest between irrigation and aquaculture in water use from reservoirs in Vietnam can be resolved when trade-offs in the economic value of water can be quantified over time. Determining these trade-offs can be used as a benchmark for making decisions about managing reservoirs tending to develop rural areas in Vietnam. To solve this problem, a stochastic dynamic programming model was constructed. This model maximizes the expected net present values generated by both agriculture and aquaculture by finding the optimal release paths throughout a year, under conditions of uncertain rainfall. The model was constructed using two main components. First, a dated water production function is used to evaluate responses of crop yields for different levels of applied irrigation. Second, a bio-economic model for reservoir fisheries is employed to estimate fish yields at different levels of water during a harvest season. Using this model, we present a case study of reservoir water management in Vietnam.irrigation, reservoir aquaculture, stochastic dynamic programming, and dynamic trade-offs, Community/Rural/Urban Development,

    The Effect of Pressure Fluctuations on the Shapes of Thinning Liquid Curtains

    Get PDF
    We consider the time-dependent response of a gravitationally thinning inviscid liquid sheet (a coating curtain) leaving a vertical slot to sinusoidal ambient pressure disturbances. The theoretical investigation employs the hyperbolic partial differential equation developed by Weinstein et al. (Phys. Fluids, vol. 9, issue 12, 1997, pp. 3625–3636). The response of the curtain is characterized by the slot Weber number, We0=ρqV/2σ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eWe0=ρqV/2σWe0=ρqV/2σ, where V role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eVV is the speed of the curtain at the slot, q role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eqq is the volumetric flow rate per unit width, σ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eσσ is the surface tension and ρ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eρρ is the fluid density. Flow disturbances travel along characteristics with speeds relative to the curtain of ±uV/We0 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e±uV/We0−−−−−−−√±uV/We0, where u=V2+2gx role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eu=V2+2gx−−−−−−−−√u=V2+2gx is the curtain speed at a distance x role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3exx downstream from the slot. Here g is the acceleration of gravity. When the flow is subcritical (We0We0\u3c1We0We0We0. In contrast, all disturbances travel downstream in supercritical curtains (We0\u3e1 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eWe0\u3e1We0\u3e1) and the slope of the curtain at the slot is vertical. Here, we specifically examine the curtain response under supercritical and subcritical flow conditions near We0=1 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eWe0=1We0=1 to deduce whether there is a substantial change in the overall shape and magnitude of the curtain responses. Despite the local differences in the curtain solution near the slot, we find that subcritical and supercritical curtains have similar responses for all imposed sinusoidal frequencies

    Non-optical Imaging of Flow, Boiling, and Salt Deposition in a Simulated Debris Bed

    Get PDF
    Determining flow and heat transfer characteristics in a debris bed or a packed bed is difficult due to the lack of optical access. Non-optical imaging methods, such as x-ray or neutron imaging, can be used to observe flow characteristics and particle deposition, as well as boiling in a packed bed. An amorphous Silicon detector based digital radiography camera can be used to image with either x-rays or neutrons at up to 100 frames per second. The digital radiography camera, coupled with digital image analysis techniques was used to characterize fluid fraction and flow rates in a simulated debris bed. A water percolation experiment was performed where a test section filled with 1-3 mm glass particles was used as a simulated debris bed, and properties such as packing fraction, volumetric flow rate, and evaporation rate were calculated both physically and using data from the images. The values obtained using the images were benchmarked against the physically calculated values and found to be in agreement, validating the image processing algorithms

    Evaluation of an Australian indigenous housing programme: community level impact on crowding, infrastructure function and hygiene

    Get PDF
    Background and Aim: Housing programmes in indigenous Australian communities have focused largely on achieving good standards of infrastructure function. The impact of this approach was assessed on three potentially important housing-related influences on child health at the community level: (1) crowding, (2) the functional state of the house infrastructure and (3) the hygienic condition of the houses.\ud \ud Methods: A before-and-after study, including house infrastructure surveys and structured interviews with the main householder, was conducted in all homes of young children in 10 remote Australian indigenous communities.\ud \ud Results: Compared with baseline, follow-up surveys showed (1) a small non-significant decrease in the mean number of people per bedroom in the house on the night before the survey (3.4, 95% CI 3.1 to 3.6 at baseline vs 3.2, 95% CI 2.9 to 3.4 at follow-up; natural logarithm transformed t test, t=1.3, p=0.102); (2) a marginally significant overall improvement in infrastructure function scores (Kruskal–Wallis test, χ2=3.9, p=0.047); and (3) no clear overall improvement in hygiene (Kruskal–Wallis test, χ2=0.3, p=0.605).\ud \ud Conclusion: Housing programmes of this scale that focus on the provision of infrastructure alone appear unlikely to lead to more hygienic general living environments, at least in this study context. A broader ecological approach to housing programmes delivered in these communities is needed if potential health benefits are to be maximised. This ecological approach would require a balanced programme of improving access to health hardware, hygiene promotion and creating a broader enabling environment in communities.\u

    Inelastic Neutron Scattering Cross Section Measurements for \u3csup\u3e134,136\u3c/sup\u3eXe of Relevance to Neutrinoless Double-\u3cem\u3eβ\u3c/em\u3e Decay Searches

    Get PDF
    Neutrinoless double-β decay (0νββ) searches typically involve large-scale experiments for which backgrounds can be complex. One possible source of background near the 0νββ signature in the observed spectra is γ rays arising from inelastic neutron scattering from the materials composing or surrounding the detector. In relation to searches for the 0νββ of 136Xe to 136Ba, such as the EXO-200 and KamLAND-Zen projects, inelastic neutron scattering γ-ray production cross sections for 136Xe and 134Xe are of importance for characterizing such γ rays that may inhibit the unambiguous identification of this yet-to-be-observed process. These cross sections have been measured at the University of Kentucky Accelerator Laboratory at neutron energies from 2.5 to 4.5 MeV

    New Constraints on Cosmic Reionization from the 2012 Hubble Ultra Deep Field Campaign

    Full text link
    Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicates reionization was underway. The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies. We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data. Under reasonable assumptions about the escape fraction of hydrogen ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z~6 the population of star-forming galaxies at redshifts z~7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M_UV\sim -13 or fainter. Moreover, low levels of star formation extending to redshifts z~15-25, as suggested by the normal UV colors of z\simeq7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to z\simeq10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations.Comment: Version accepted by ApJ (originally submitted Jan 5, 2013). The UDF12 website can be found at http://udf12.arizona.ed

    PCB-Related Alteration of Thyroid Hormones and Thyroid Hormone Receptor Gene Expression in Free-Ranging Harbor Seals (Phoca vitulina)

    Get PDF
    Persistent organic pollutants are environmental contaminants that, because of their lipophilic properties and long half-lives, bioaccumulate within aquatic food webs and often reach high concentrations in marine mammals, such as harbor seals (Phoca vitulina). Exposure to these contaminants has been associated with developmental abnormalities, immunotoxicity, and reproductive impairment in marine mammals and other high-trophic-level wildlife, mediated via a disruption of endocrine processes. The highly conserved thyroid hormones (THs) represent one vulnerable endocrine end point that is critical for metabolism, growth, and development in vertebrates. We characterized the relationship between contaminants and specific TH receptor (TR ) gene expression in skin/blubber biopsy samples, as well as serum THs, from free-ranging harbor seal pups (n = 39) in British Columbia, Canada, and Washington State, USA. We observed a contaminant-related increase in blubber TR-α gene expression [total polychlorinated biphenyls (∑PCBs); r = 0.679; p < 0.001] and a concomitant decrease in circulating total thyroxine concentrations (∑PCBs; r = −0.711; p < 0.001). Consistent with results observed in carefully controlled laboratory and captive feeding studies, our findings suggest that the TH system in harbor seals is highly sensitive to disruption by environmental contaminants. Such a disruption not only may lead to adverse effects on growth and development but also could have important ramifications for lipid metabolism and energetics in marine mammals

    Integration of vanHAX downstream of a ribosomal RNA operon restores vancomycin resistance in a susceptible Enterococcus faecium strain

    Get PDF
    During the genomic characterisation of Enterococcus faecium strains (n = 39) collected in a haematology ward, we identified an isolate (OI25), which contained vanA-type vancomycin resistance genes but was phenotypically susceptible to vancomycin. OI25 could revert to resistance when cultured in the presence of vancomycin and was thus considered to be vancomycin-variable. Long-read sequencing was used to identify structural variations within the vancomycin resistance region of OI25 and to uncover its resistance reversion mechanism. We found that OI25 has a reduced ability to positively regulate expression of the vanHAX genes in the presence of vancomycin, which was associated with the insertion of an IS6-family element within the promoter region and the first 50 bp of the vanR gene. The vancomycin-resistant revertant isolates constitutively expressed vanHAX genes at levels up to 36,000-fold greater than OI25 via co-transcription with a ribosomal RNA operon. The vancomycin-resistant revertants did not exhibit a significant growth defect. During VRE outbreaks, attention should be paid to contemporaneous vancomycin-susceptible strains as these may carry silent vancomycin resistance genes that can be activated through genomic rearrangements

    Resilience, science, technology, engineering, and mathematics (STEM), and anger: A linguistic inquiry into the psychological processes associated with resilience in secondary school STEM learning.

    Get PDF
    AIM: To examine resilience in Science, Technology, Engineering, and Mathematics (STEM) learning within an ecological model, identifying the psychological processes associated with resilient, and non-resilient learning to develop a framework for promoting STEM resilience. SAMPLE AND METHOD: From a sample of secondary-school students (n = 4,936), 1,577 students who found their STEM lesson difficult were identified. Students were assessed on three resilience capabilities and asked to write a commentary on how they responded to the lesson. RESULTS: Factor analysis revealed that resilience in STEM learning could be positioned within the ecological systems model, with students' resilience being comprised of three capabilities; the ability to quickly and easily recover (Recovery), remain focussed on goals (Ecological), and naturally adjust (Adaptive capacity). Using a linguistic analysis programme, we identified the prevalence of words within the student commentaries which related to seven psychological processes. Greater ability to recover was negatively related to negative emotional processes. To increase the specificity of this relationship, we identified high and low resilient students and compared their commentaries. Low resilient students used significantly more anger words. Qualitative analysis revealed interpersonal sources of anger (anger at teacher due to lack of support) and intrapersonal sources of anger (including rumination, expression and control, and seeking distraction). CONCLUSIONS: Anger is a key process that distinguishes students who struggle to recover from a difficult STEM lesson. An ecological systems model may prove useful for understanding STEM resilience and developing intervention pathways. Implications for teacher education include the importance of students' perceptions of teacher support
    corecore